Applications of Remote Sensing and GIS in Solid Waste Management – A Review

Solid waste, thrown away in our surroundings and heaped on Mother Earth every day, is a by-product of civilization. Waste has irritated civilization for thousands of years. With rapid growth in world population, industrial revolution and greater consumerism, the amount of waste generated has grown exponentially. Thus, both economic development and population increase have contributed to the rising volumes of waste. In the last few decades, with greater ease in the movement of money, goods and population, generation and consumption of goods has increased resulting in increased production of waste materials. Generation of wastes is an indication of inefficient use of resources, making products less valuable. From a scientific viewpoint, waste management requires consideration of the waste and the type of place where the waste has originated.
This is a preview of subscription content, log in via an institution to check access.
Access this chapter
Subscribe and save
Springer+ Basic
€32.70 /Month
- Get 10 units per month
- Download Article/Chapter or eBook
- 1 Unit = 1 Article or 1 Chapter
- Cancel anytime
Buy Now
Price includes VAT (France)
eBook EUR 117.69 Price includes VAT (France)
Hardcover Book EUR 158.24 Price includes VAT (France)
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others

Integration of Advanced Technologies in Urban Waste Management
Chapter © 2023

Application of Geographic Information Systems (GIS) and Remote Sensing (RS) in solid waste management in Southern Africa: a review
Article 05 February 2024

An Integrated Solid Waste Management (ISWM) Plan Using Google Earth and Linear Programming: A Case Study of Kharagpur City, West Bengal
Chapter © 2022
References
- Adeofun, C.O., Achi, H.A., Ufoegbune, G.C., Gbadebo, A.M. and Oyedepo, J.A., 2011. Application of Remote Sensing and Geographic Information System for Selecting Dumpsites and Transport Routes in Abeokuta., Nigeria. Proceedings of the Environmental Management Conference. http://www.unaab.edu.ng. Google Scholar
- Agaji, I. and Wajiga, G., 2007. Computer Based Solid Waste Management for Nigerian Cities. An Agenda for Sustainable Development. NASHER Journal, 5(1), 75–78. Google Scholar
- Apaydin, Omer and Gonullu, M. Talha, 2008. Emission Control with Route Optimization in Solid Waste Collection Process: A Case Study. Sadhana, 33(2), 71–82. ArticleCASGoogle Scholar
- Babalola, Ayo and Busu, Ibrahim, 2011. Selection of Landfill Sites for Solid Waste Treatment in Damaturu Town Using GIS Techniques. Journal of Environmental Protection, 2, 1–10. doi:10.4236/jep.2011.21001. ArticleCASGoogle Scholar
- Balasooriya, B.M.R.S., Vithanage, M., Nawarathna, N.J., Ken Kawamoto, Zhang, M. and Herath, G.B.B., 2014. Solid Waste Disposal Site Selection for Kandy District, Sri Lanka: Integrating GIS and Risk Assessment. International Journal of Scientific and Research Publications, 4(10), 1–6. Google Scholar
- Bani, M.S., Rashid, Z.A., Hamid, K.H.K., Harbawi, M.E., Alias, A.B. and Aris, M.J., 2009. The Development of Decision Support System for Waste Management: A Review. World Academy of Science, Engineering and Technology, 3, 118–125. Google Scholar
- Basavarajappa, H.T., Pushpavathi, K.N., Balasubramanian, A. and Manjunatha, M.C., 2012. Mapping and Integration of Geology and Geomorphological Landforms of Mysore District, Karnataka, India Using Remote Sensing and GIS Techniques. Frontiers of Geosciences, 1, 64–75. Google Scholar
- Bhambulkar, A.V., 2011. Municipal Solid Waste Collection Routes Optimized with ARC GIS Network Analyst. International Journal of Advanced Engineering Sciences and Technologies, 11(1): 202–7. Google Scholar
- Bhargava, H.K. and Tettelbach, C., 1997. A Web Based Decision Support System for Waste Disposal and Recycling. Computers, Environment and Urban Systems, 21(1), 47–65. ArticleGoogle Scholar
- Brimicombe, A.J., 2003. A Variable Resolution Approach to Cluster Discovery in Spatial Data Mining. Chapter in Computational Science and Its Applications – ICCSA 2003, 2669, 1–11. International Conference Montreal, Canada, May 18–21, 2003 Proceedings, Part III. Google Scholar
- Carver, S.J., 1991. Integrating Multi-Criteria Evaluation with Geographical Information Systems. International Journal of Geographical Information Systems, 5(3), 321–339. doi:10.1080/02693799108927858. ArticleGoogle Scholar
- Chalkias, C. and Lasaridi, K., 2009. A GIS Based Model for the Optimisation of Municipal Solid Waste Collection: The Case Study of Nikea, Athens, Greece. WSEAS Transactions on Environment and Development, 5(10): 640–650. http://www.scopus.com/inward/record.url?eid=2-s2.0-71449113236&partnerID=40& md5=2b62a0a667c0b3241644d767d4b04cc2.
- Chang, N.B., Lu, H.Y. and Wei, Y.L., 1997. GIS Technology for Vehicle Routing and Scheduling in Solid Waste Collection Systems. Journal of Environmental Engineering, 123(9): 901–910. http://www.scopus.com/inward/record.url?eid=2-s2.0-0031475101&partnerID=40&md5=343b2541aad0bd0fcc7e4f9268107e95. ArticleCASGoogle Scholar
- Chang, N.B, Parvathinathan, G. and Breeden, J.B., 2008. Combining GIS with Fuzzy Multicriteria Decision-Making for Landfill Siting in a Fast-Growing Urban Region. Journal of Environmental Management, 87, 139–153. doi:10.1016/j.jenvman.2007.01.011.
- Chimote, Kedar and Bhambulkar, Ashtashil, 2012. Municipal Solid Waste (MSW) Collection by Geographical Information System (GIS). National Conference on Innovative Paradigms in Engineering and Technology. Google Scholar
- Choudhury, S. and Das, S., 2012. GIS and Remote Sensing for Landfill Site Selection-A Case Study on Dharmanagar Nagar Panchayet. IOSR Journal of Environmental Science, Toxicology and Food Technology, 1(2), 36–43. http://iosrjournals.org/iosr-jestft/papers/vol1-issue2/H0123643.pdfArticleGoogle Scholar
- Davami, A.H., Moharamnejad, N., Monavari, S.M. and Shariat, M., 2014. An Urban Solid Waste Landfill Site Evaluation Process Incorporating GIS in Local Scale Environment: A Case of Ahvaz City, Iran. International Journal of Environmental Research, 8(4), 1011–1018. CASGoogle Scholar
- Deswal, Meena and Laura, J.S., 2014. Application of GIS in MSW Management in India. International Journal of Engineering Research and Development, 10(10), 24–32. Google Scholar
- Eastman, J.R., Emani, S., Hulina, S., Jiang, H., Johnson, A. and Ramachandran, M., 1997. Applications of Geographic Information Systems (GIS) Technology in Environmental Risk Assessment and Management. UNEP, Division of Environmental Information and Assessment, Sioux Falls, SD. Google Scholar
- Ebistu, Tirusew Ayisheshim and Minale, Amare Sewnet, 2013. Solid Waste Dumping Site Suitability Analysis Using Geographic Information System (GIS) and Remote Sensing for Bahir Dar Town, North Western Ethiopia. African Journal of Environmental Science and Technology, 7(11), 976–989. doi:10.5897/AJEST2013.1589. Google Scholar
- Erham, E., Avraam, K., George, P. and Stevanus, A., 2008. A Multicriteria Facility Location Model for Municipal Solid Waste Management in North Greece. European Journal of Operational Research, 187(3), 1402–1421. ArticleGoogle Scholar
- Gbanie, Solomon Peter, Paul Bobby Tengbe, Jinnah Samuel Momoh, James Medo and Victor Tamba Simbay Kabba, 2013. Modelling Landfill Location Using Geographic Information Systems (GIS) and Multi-Criteria Decision Analysis (MCDA): Case Study Bo, Southern Sierra Leone. Applied Geography, 36 (January), Elsevier Ltd, 3–12. doi:10.1016/j.apgeog.2012.06.013. Google Scholar
- Ghose, M.K., Dikshit, A.K. and Sharma, S.K., 2006. A GIS Based Transportation Model for Solid Waste Disposal – A Case Study on Asansol Municipality. Waste Management, 26, 1287–1293. doi:10.1016/j.wasman.2005.09.022. ArticleCASGoogle Scholar
- Goel, Sudha, 2008. Municipal Solid Waste Management (MSWM) in India: A Critical Review. Journal of Environmental Science and Engineering, 50(4), 319–328. CASGoogle Scholar
- Hazra, T., Maitra, B.M. and Goel, S., 2017. Development and Application of a Multi-Criteria Decision Making (MCDM) Tool for solid waste management. Kolkata as a case study. Advances in Solid and Hazardous Waste Management. Capital Books, New Delhi and Springer, Switzerland. Google Scholar
- Hannan, M.A., Arebey, M., Abdullah, H., Begum, R.A. and Basri, H., 2011. Solid Waste Monitoring and Management Using RFID, GIS and GSM. Journal of Applied Sciences Research, 7(12), 1961–1964. doi:10.1109/SCORED.2009.5443382. Google Scholar
- Hokkanen, J. and Salminen, P., 1997. Choosing a Solid Waste Management System Using Multicriteria Decision Analysis. European Journal of Operational Research, 98, 19–36. doi:Doi 10.1016/0377-2217(95)00325-8.
- Hoornweg, D. and Bhada-Tata, P., 2012. What a Waste: A Global Review of Solid Waste Management.. http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:WHAT+A+WASTE:+A+global+review+of+solie+waste+management#0.
- Idowu, Adebayo P., Emmanuel, R. Adagunodo, Olapeju, A. Esimai and Tosin, C. Olapade, 2012. Development of A Web Based GIS Waste Disposal Management System for Nigeria. International Journal of Information Engineering and Electronic Business, 3, 40–48. doi:10.5815/ijieeb.2012.03.06. ArticleGoogle Scholar
- Javaheri, H., Nasrabadi, T., Jafarian, M.H., Rowshan, G.R. and Khoshnam, H., 2006. Site Selection of Municipal Solid Waste Landfills Using Analytical Hierarchy Process Method in a Geographical Information Technology Environment in Giroft. Iran Journal of Environmental Health Science Engineering, 3(3), 177–184. Google Scholar
- Johansson, Ola M., 2006. The Effect of Dynamic Scheduling and Routing in a Solid Waste Management System. Waste Management, 26, 875–885. doi:10.1016/j.wasman.2005.09.004. ArticleGoogle Scholar
- John, S. 2010. Sustainability Based Decision-Support System for Solid Waste Management. International Journal of Environment and Waste Management, 6(1-2), 41–50. ArticleGoogle Scholar
- Kanchanabhan, T.E., Abbas Mohaideen, J., Srinivasan, S. and Lenin Kalyana Sundaram, V., 2010. Optimum Municipal Solid Waste Collection Using Geographical Information System (GIS) and Vehicle Tracking for Pallavapuram Municipality. Waste Management & Research, 29(3), 323–339. doi:10.1177/0734242X10366272. ArticleGoogle Scholar
- Karadimas, Nikolaos V. and Vassili G. Loumos, 2008. GIS-Based Modelling for the Estimation of Municipal Solid Waste Generation and Collection. Waste Management & Research, 26, 337–346. doi:10.1177/0734242X07081484. ArticleGoogle Scholar
- Katpatal, Y.B. and Rao, B.V.S.R., 2011. Decision Support System for Municipal Solid Waste Management of Nagpur Urban Area Using High-Resolution Satellite Data and Geographic Information System. Journal of Urban Planning and Development, 137, 65–76. doi:10.1061/(ASCE)UP.1943-5444.0000043. ArticleGoogle Scholar
- Khajuria, A., Matsui, T. and Machimura, T., 2011. GIS Application for Estimating the Current Status of Municipal Solid Waste Management System: Case Study of Chandigarh City, India. Our Nature, 9, 26–33. Google Scholar
- Khan, Debishree and Samadder, S.R., 2014. Application of GIS in Landfill Siting for Municipal Solid Waste. International Journal Environmental Research and Development, 4(1), 37–40. Google Scholar
- Kumar, Sunil and Mohammad Izhar Hassan, 2013. Selection of a Landfill Site for Solid Waste Management: An Application of AHP and Spatial Analyst Tool. Journal of the Indian Society of Remote Sensing, 41(1), 45–56. doi:10.1007/s12524-011-0161-8. ArticleGoogle Scholar
- Liebman, J.C., Male, J.W. and Wathne, M., 1975. Minimum Cost in Residential Refuse Vehicle Routes. Journal of Environmental Engineering Division, 101, 399–412. Google Scholar
- Malakahmad, Amirhossein, Putri Bakri, Muniah Radin Mokhtar and Noordiana Khalil, 2014. Solid Waste Collection Routes Optimization via GIS Techniques. Procedia Engineering, 77 Elsevier B.V., 20–27. doi:10.1016/j.proeng.2014.07.023. Google Scholar
- Mănoiu, Valentina, Iulia Fontanine, Romulus Costache, Remus Pravalie and Iulian Mitof, 2013. Using GIS techniques for assessing waste landfill placement suitability. Case study: Prahova County, Romania, Geographia Technica, 8(2), 47–56. Google Scholar
- McDougall, F.R., White, P.R., Franke, M. and Hindle, P., 2003. Integrated Solid Waste Management: A Life Cycle Inventory. doi:10.1016/S0956-053X(02)00032-6. Google Scholar
- Muriithi, David and Mutua, Felix, 2012. Eco-Taka: An Efficient GIS Based Solid Waste Management Solution. International Journal of Science and Research, 3(9), 1016–1022. Google Scholar
- Natesan, Usha and Suresh, E.S.M., 2002 Site Suitability Evaluation for Locating Sanitary Landfills Using GIS. Journal of the Indian Society of Remote Sensing, 30(4), 261–264. doi:10.1007/BF03000369. ArticleGoogle Scholar
- Nishant, T., Prakash, M.N. and Vijith, H., 2010. Suitable Site Determination for Urban Solid Waste Disposal Using GIS and Remote Sensing Techniques in Kottayam Municipality, India. International Journal of Geomatics and Geosciences, 1(2), 197–210. Google Scholar
- Nithya, R., Velumani, A. and Senthil Kumar, S.R.R., 2012. Optimal Location and Proximity Distance of Municipal Solid Waste Collection Bin Using GIS: A Case Study of Coimbatore City. WSEAS Transactions on Environment and Development. 8(4), 107–119. doi:10.11648/j.ajaf.20140206.20. Google Scholar
- Ohri, A. and Singh, P.K., 2010. Development of Decision Support System for Municipal Solid Waste Management in India: A Review. International Journal of Environmental Sciences, 1(4), 440–453. Google Scholar
- Oyinloye, Michael Ajide, 2013. Using GIS and Remote Sensing in Urban Waste Disposal and Management. European International Journal of Science and Technology, 2(7), 106–118. www.eijst.org.uk. Google Scholar
- Padmaja, V., Asadf, S.S. and Anji, M.R., 2006. Solid Waste Disposal Site Selection Using Analytical Hierarchy Process and GIS. Pollution Research, 25(1), 73–76. Google Scholar
- Purohit, Suchit S. and Bothale, Vinod M., 2011. RFID Based Solid Waste Collection Process. IIM Ahmedabad Newsletter. doi:10.1109/RAICS.2011.6069354. Google Scholar
- Reddy, M.A., 2005. Hierarchy Process (AHP) – GIS Model for Landfill Siting: A Case Study of Hyderabad City, India. International Conference on Environmental Management (ICEM). Google Scholar
- Reddy, M.A. and Padmaja, V., 2007. Development of GIS Based Decision Support Tool for Optimal Route Analysis for Transportation of Solid Waste. Proceeding of 22nd International Conference on Solid Waste Technology and Management Philadelphia PA USA Google Scholar
- Saxena, S., Srivastava, R.K. and Samaddar, A.B., 2010. Towards Sustainable Municipal Solid Waste Management in Allahabad City. Management of Environmental Quality: An International Journal, 21(3), 308–323. doi:10.1108/14777831011036876. ArticleGoogle Scholar
- Saxena, S. and Srivastava, R.K., 2011. GIS for Site Selection for MSW Landfills. Proceedings of Indian Geotechnical Conference, 793–796. Google Scholar
- Şener, Şehnaz, Sener, Erhan and Karagüzel, Remzi, 2011. Solid Waste Disposal Site Selection with GIS and AHP Methodology: A Case Study in Senirkent-Uluborlu (Isparta) Basin, Turkey. Environmental Monitoring and Assessment, 173, 533–554. doi:10.1007/s10661-010-1403-x. ArticleGoogle Scholar
- Senthil, J., Vadivel, S. and Murugesan, J., 2012. Optimum Location of Dust Bins Using Geo-Spatial Technology: A Case Study of Kumbakonam Town, Tamil Nadu, India. Advances in Applied Science Research, 3(5), 2997–3003. Google Scholar
- Sharholy, Mufeed, Kafeel Ahmad, Vaishya, R.C. and Gupta, R.D., 2007. Municipal Solid Waste Characteristics and Management in Allahabad, India. Waste Management, 27, 490–496. doi:10.1016/j.wasman.2006.03.001. ArticleGoogle Scholar
- Shoba, B. and Rasappan, K., 2013. Application of GIS in Solid Waste Management for Coimbatore City. International Journal of Scientific and Research Publications, 3(10), 1–4. Google Scholar
- Shukla, Gaurav, Shashi, M. and Jain, Kamal, 2012. Decision Support System for Selecting Suitable Site for Disposing Solid Waste of Township. International Journal of Remote Sensing and GIS, 1(1), 2–11. Google Scholar
- Siddam, Samidha, Khadikar, Isha and Chitade, Anil, 2012. Route Optimisation for Solid Waste Management Using Geo-Informatics. IOSR Journal of Mechanical and Civil Engineering, 2(1), 78–83. ArticleGoogle Scholar
- Son, Le Hoang, 2014. Optimizing Municipal Solid Waste Collection Using Chaotic Particle Swarm Optimization in GIS Based Environments: A Case Study at Danang City, Vietnam. Expert Systems with Applications, 41, Elsevier Ltd, 8062–8074. doi:10.1016/j.eswa.2014.07.020. Google Scholar
- Sudhir, V., Muraleedharan, V.R. and Srinivasan, G., 1996. Integrated Solid Waste Management in Urban India: A Critical Operational Research Framework. Journal of Socio Economic Planning Sciences, 30(3), 163–181. http://www.sciencedirect.com/science/article/pii/0038012196000122. ArticleGoogle Scholar
- Sule, J.O., Aliyu, Y.A. and Umar, M.S., 2014. Application of GIS in Solid Waste Management in Chanchaga Local Government Area of Niger State, Nigeria. IOSR Journal of Environmental Science, Toxicology and Food Technology, 8(9), 17–21. Google Scholar
- Sumathi, V.R., Natesan, Usha and Sarkar, Chinmoy, 2008. GIS-Based Approach for Optimized Siting of Municipal Solid Waste Landfill. Waste Management, 28, 2146–2160. doi:10.1016/j.wasman.2007.09.032. ArticleCASGoogle Scholar
- Tchobanoglous, G., Theisen, H. and Vigil, S.A., 1993. Integrated Solid Waste Management: Engineering Principles and Management Issues. McGraw Hill International, Singapore. Civil Engineering Series. Google Scholar
- Twumasi, Yaw A, and Edmund C Merem. 2007. “Using Remote Sensing and GIS in the Analysis of Ecosystem Decline along the River Niger Basin: The Case of Mali and Niger.” Int. J. Environ. Res. Public Health 4(2): 173–84. Google Scholar
- Velumani, A., 2014. Development Research. International Journal of Development Research, 4(1), 100–104. Google Scholar
- Vijay, Ritesh, Gautam, Ajay, Kalamdhad, Ajay, Gupta, Apurba and Devotta, Sukumar, 2008. GIS-Based Locational Analysis of Collection Bins in Municipal Solid Waste Management Systems. Journal of Environmental Engineering and Science, 7, 39–43. doi:10.1139/s07-033. ArticleCASGoogle Scholar
- Witlox, Frank, 2005. Expert Systems in Land-Use Planning: An Overview. Expert Systems with Applications, 29, 437–445. doi:10.1016/j.eswa.2005.04.041. ArticleGoogle Scholar
- Zeng, Y. and Trauth, K., 2005. Internet-Based Fuzzy Multicriteria Decision Support System for Planning Integrated Solid Waste Management. Journal of Environmental Informatics, 6(1), 1–15. doi:10.3808/jei.200500050. ArticleCASGoogle Scholar
Author information
Authors and Affiliations
- School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, West Bengal, India Deblina Dutta
- Civil Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur, 721302, WB, India Sudha Goel
- Deblina Dutta